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ABSTRACT

Several theoretical and  empirical procedures are  combined into a  single
computer program to predict lift drag, and center of pressure on jquite general
wing-body grometries. The method is appheable for Mach number 7ero to three and
angle-or-attack  zero  to  about  fifteen degrees. Computed  results  for  several
config mations compare well with experimentai and other analytical results. Tt costs
about five dollars per Mach number to compute the static acrodynamics of a typral
wing-body shape on the CDC 6700 computer.
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L. INTRODUCTION

The geal of the present research is to develop the capability to compute static
acrodyn.inics on configurations such oy guided and unguided projectiles for the Mach
number range zero to three and angle-of-attack range zero to about twenty degrees.

he  Mach number and angle-of-attack range cover a mgjority of present and
probable future design requiraments tor gun launched weapors. This work, therefore.
is a natozal extension to the body alone aerodynamic prediction  methodology
develored in Reference 1. Induded hercin is an outline of the theoretical and
empirical methods used to compute fift, drag, wnd pitching moment on wings ang
tails. Also included arc procedures to determine the various interference effects
which oceur between the wing-teil or body-tail. A description and listing of the
entire wirg-body computer program will appear a» part I of this report.

The overall guiding principle of the current work &s to use amaly tical methods
which yield reasonable  accuracies and  jequire reasonable computational time. For
arcas where  the state-of-the-art 1 such that avalytical procedures do not mect the
above requirements on accuracy and cost, empirical procedures are employed. This
problem occurs mainly in transonic {low,

There have been several works which pertain to the present problem. The Jirst
of these is that of Saffell, ¢t a2’ who devele, ed a computer program to compute
static acrodynamics on low aspect ratio missile contigurations. The method could b
applied for large angles-of-attack and for subsonic thiough supersome Mach numbers.
However, the drag was compuled using handbook techuiques and the tift of the
wing alone wus found from an empirical formula for low aspect ratio wings. Thus,
drag results ate quite inaccurate tat small angles-of-attack), as well as hft for high
aspect ratio configurations.

Another method which is available for spin-stabilized (or body alone) projectiles
is the GE Spmner’ program.’?’ This program. which is completely cmpirical, gives
good results for most standi~d shaped projectiles but is too limited in scope to
meet the present needs.

The most detailed method of those previously available is that of Woeodward.')
Woodward uses  perturbation  theory  to compute  the  pressure  distribution  on
wing-body combinations m subsome and supersoniv flow. However, the bodies must
be pointed and the wing Jeading odge sharp Alo, he does not caleulate the base
and skin-friction drag or the non-hacar angle-of-atiack effects,

As 1 oapparent iront the above discussion. vone of the previous works can in
itseit’ accurately  compute  total lift. drag. and  pitching moment on wmg-body




combinations for Mach numbers 0 to 3, and angles-of-attack 0° to 20°. Morcover,
no attempt is made to handle the complicated body and wing geometries (see
Figure 1) which arise from gun launched guided weapons.
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C. GUIDED FIN-STABILIZED PROJECTILE

FIGURE | BASIC CONFIGURATIONS ( ILLUSTRATIORN ONLY)




[I. ANALYSIS

The aporoach of the piesent work is 1o break the miussite configuration down
into its indmidusl componients  composed ot bady  alone. wings. and  canards and
thea to account separatels  tor the varow, terference effects. Tl s opposed to
wathematically modetting the entire confieuration simultaneously as v done in the
work of Woodwaid ¥ Woodward conadered the wing-bady  simultancoasly  through
an appropriate source and sk destribution, where the sources trom the body were
slfowed 1o intluence the wing solation and vice versa. This is lairh straightforward
tor pointed nosed bodies wd wings with sharp leading edges, but for blunt nosed
hoadies and blunt leading cdge wings, o v the case in the praent work, the
prodblem s complicated  considerably. Morcover, assumdng  perturbatwn  theories are
wed o caleulate  the  imviscid  aerodynamies,  the approach ob  considering  the
idividual components separately <hould yield total forees and moments which me as
wood as thowe that would he obtamed by considering the configuration as a whole.

A.  Body Alone Acrodynamics

The body alone avrodymamic analyss appears in Refevence 1oand will not
be repeated here. However. a stmawry of the various methods for compnting body
alone  aerodynanues  appears o Figure 2. All the methods ae stane rd in the
literature  (References 5 through 10) with the exception of the empirical schemes
derived for transonic lift and wave drag and the combined Newtoniaa-perturba.ion
theory for caleulating  nose  wave drag  in supersonic How  The  combined
Newtontan-perturbation  theory  was  developed <o 1casonable  gesults  for  statie
arodymamies could be obtained at low supersonic Mach numpers for blupt nosed
configurations. Previowsly. the availible theerivs were cithet too maceurate! ' or too
complicated''>)  for wse at  the lower end of the supersome Mach  range
2K M, < 2.0

B.  Tail or Canard Drag

As e the case of an avasymmeine body. the threc-dmcrsional wing drag
I composed of wave. sKin-foiction, and & frailing edge separation drae if the trading
wdge is blunt or the rear section of the aufoll has a larze slope  Haos trailing edpe
separation  drag » analogots to base presare drag oon a body of pevolution. In
addition to these drag componeats  the wings can cause an additonal drag from
body base pressure changes due to the presence of fins. Fach of these wing drag
components will be treated cparately pelow

fu
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1. Wave Drag

It will be assumed apriori that the wing is symmetric atut the x-y
olane so that no ..mber is present. Furthermore, the wing will be assumed to be
thn wnh cither a modified double wedge (Figurc 3A) or biconvex airfoil section
(Figure 3B). However, by assuming a modified doubic wedge only requires that
straight lines exist between peints A and B, B and D, and D and E (see
Figure 3A). These straight lines could then be any percentage of the entire chord.
For example, if BD were zero the airfoil would be a double wedge design or if
both BD and DE were zeio, the airfoil would be a wedge. Also, cither the biconvex
or modified Jouble wedge design may have blunt leading and trailing edges and the
thickness to chord ratio may vary along the span. The wimng geerators GK, HL, IM,
and JN are assumed straight,

Sirce the wing is thin, the linearized three-dimensionral equation of
motion governing the steady flow field is;(13?

B, = by, =0, =0 (1)

where subscripis indicate partial differentiation. Here, the velocity potential ¢ is
wlated to the perturbation velocities by:

$ = u (20)
¢y =V (2b)
9, =W (2¢)

T'he boundary conditions required for the solution of the linear partial differential
Fquation (1) are that the i - must be tangent to the surface:

aF
wixy) = ¢,(x.y.0°) = ¢,(xy0%) = (t);(x.y) (3)

and that the perturbation velocities must vanish upstream of the most forward point
of the wing. Referring to Figure 3A, this most forward pomnt is at x = 0° so that
the second boundary condition is:

G
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U B R (N vz =90 (4)

Fhe ples or minus supersenipt meces the partculas axis is approached trom  the
nostlive  or - negative  side. respectivenn, Due  to the symmetrs of  the  wirton,
Fquation 3y indicates that it makes no ditference irom which side one approaches
the axis 72 = 0.

Equation (1) is valid only where the perturbation velooities are small.
Thi~ means that in the neghborhood of o blunt leading or trailing edge, some other
method must be apphed. Constder first a4 semral three-dimensional wing  with shorp
leading and trailing edges.

The generad solution to kquation (1) along the airfoil surface (¢ = 0)
it
i

] wix; .y dxd
Gy 0) = - —-ff SRR AT (5)
nz YO-x =gy v

where ¥ indicates the region of mtegration. The source strength wix, .y} is related
to  the Tocal slope of the airfoil surface  through the boundary condition
Equation (3).

In previous works. w3 ) was assumed constant or & function of
only (the slope of the amfoil surfase was the same all along the span), so the
integration of the above mtegral could be carried out in closed form for ~impic
wing planforms.1*? In the present analysis. the sope of the wmg is allowed 10
vary in the spanwise as well s the chordwise direction so  the in egiation  of
Fquation (5) cannot, in  general, be carried out in closed form. The most
straightiorward method of solation, is then to define the slope of the given sarface
and carry  out the double integration by numerical gquadiature. However, one must
be aware of the singular nature of the double wtegial where (x- £ ¥ = g7 3 )’
during  the intesration process. Apother  aiternative » to asswme that on a small
clement of the wing surface. win, 3 ) is constant. Tneuo if the region of mtcgiation
of Fquation (85), ¥ i asumed to be over a smdll element of the wmg, one may
wrle.

Sy 0) wiN.y )ff dnpdy g o
vyl = e v o )
- n &/(x~\l)“»:>*(y»yl)3




Equation (61 1s now in the form given mm Reference 13 for simple planform
geometrivs and rthe integration cun be warned out directly. Again it should be
emphasized that w(x.yi s the slope of the airfoil surface at a given point and vares
tor cach clrment on the wing.

The closed form solution of Equation (6) depends on whether the
wing generators are subconic or supersonic. Referring to Figure 3A, a subsonic wing
generator would exist i the Mach nember normal to line GK were less than on»
and a supersome wing generator wouid onist if M, > 1. The same applics to cach
of the other wing generators HL, IM, and IN. For the biconvex airfoil, Figure 3B, a
continuous disfubution of wing generaters is placed between the lines GK and IN.
Lach wmg generator is analogous tc a line of sources and sinks with strengths
sufficient to Keep the tlow tapgeut to the surface.

a.  Subsonic Source or Sink Line (SOSL)

If the wing generator s subsonic, the induced velocity at a given
point P, due to the SOSL, is dependent on the location of P relative to the SOSL.
Referrmgz to Figure 4A, it P = P, the induced velocity ig:t 1Y)

TNy .V
ﬂ_(-j‘_lmll%l‘ cosh™ !
|

Q"’\:: Y
ap/n” -

wheve wois determined from the boundary condition and is (for the airfoil section
aty = Ypy ¥

( = dz
WO V) n
AR
In kFquation (7). the definitions
n = k/B
k= tan (72)
o = ky N,

Eave been wsed If P = Py. the mduced velodity at P, due to a given SOSL is:

i0
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At the wmg tip. there 1 an additional disturbance within the Mach line emanating
from the tp leading edge (Figere 4B). The induced velovity in this region, P = P..

™

o t
WiXpq.Voy ) <+ 0!
L= .._..l‘.}._;.L.‘__ cosh AN N
a/n* - | hn(i(rl + 1)

The absolute value of o is takew because o is actually negative for the pomt P,

The induced velocity at any peint. say P = P4. outside of the Mach hines emanatine

dom the beginning of the SOSL is 7ero since this point is out of the 7one of

miluence,
b. Supersc nic SOSL
It the wing generator is supersonic, the Mach lines from point 0

in Figure 5A lic behmnd the SOSL. If in Figure 5. P = P,. then the nduced
velocity at Py due 1o the disturbance caused by the SOSL is.}d

WX, , V., !
R (I

&/inn2

If P = P,. the mduced velocity is

(h

o = -1:[}*\/‘1 - ¢*

Referrirg to Figure SB. the additional induced velocity inside the area boanded by
the tip and the Mach line emanating from the tip (P = Py) is

win, Y. )
¢ I Q '[‘G: “n (1)
Loy - - 2
N w5/ | 1}3 inU +ion
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Again if P = P,. the point is out of the zone of influence of the SOSL ana thus
the induced velocity is zero.

The induced velocity at a given point un any wing geometry can
now be computed by the proper superposition of the triangular SOSL suown in
Figures 4 and 5. This is because of the linear nature ot the governing flow-ficid
Equation (i). As an cxample of how the above superposition principle works,
consider the wing shown in Figure €. For simplicity. the slopes x, and x, are
constarit. The ving AHJD can be represented by the superposition of five SOSL.
The first has the planform AEH and source intensity:

where X, I8 the slope of the segment AB. The sccond has the planform BIF and
intensity

WX o) = (X - XV,
and the third the planform DJG and intensify

w(.\:p .yp) ==X,V

0

The other two SOSL represent the tip effects. They are the planforms HIL and UJK
and have source intensities of opposite signs than those representing the wing.

The above procedure can be applicd to a wing of general
planform. The only difference is that for each point in q. estion, the slope is not
constant as was the cdase in the simplified example. Then for some general point
located on the wing surface, the total induced velocity due tu all sources and sinks
15 found by applying one of the Equations (7) through (12) for cach SOSL. The
particular cquation applied depends upon the lecation of the point relative to the
SOSL and the Mach Jine as discussed carlier. These individual contributions are then
summed to get the total induced velocity. Knowing the total induced velocity at a
point allows one to calculate the pressure coefficient at the given point by:

e,




FIGURE €,
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CPL\._\') = <2r;,\(x,y.0) (13

The pressure coetficient can be caleulated at a given number of spanwite  and

chordwise Jocations. The drar of a piven airtoil sction at the spanwise siation
oy H

y =y, is then

R O p

C, = - C (N, wisy, Jda (14)
d c(y;\\ p( )»\ }1\

The total drag for one fin of semispan b/2 is then:

1 bi2
2 e— o 5
Cy S I Cyety)dy (15)
w D
where S = b/2(c, +¢,). For cruciform fins. the fotal drag coefficient is:
b2
4 Al
Gy = g— Cyety)y (16)
won

I it s desired to base the drag coefficient on the body cross-sectional arca, the
Lauation (16) mrst be multiplied by the factor S“,/Sm.

Lquations (14 and  (16) can  be integrated by numerical
quadrature if' the generators of the wing surfuce are stupersonic, If the generators are
sithsonie, lincar theory indicates the pressure coefficients go to infinity at the wing
generators.  Physically. this cannot be true which means that tor subsonic SOSL.
Imear theory is not valid at the SOSL. The reason is that the velocity perturbations
in the vicinity ol the discontinuities are no longer small, violating one of the
assumptions in linear theory. However, the velocity perturbations are small a slight
distance from the SOSL so that linear theory can be applied. Numerical experiments
adicated a distance ot fiv: thowandths of the chord fength from the SOSL wis
sufficient and the value of pressure caleulated at this pomnt was assumed to exist up
1o the SOEL.

[he previous analysis applies to airfoils with sharp  leading and

trailing edges. 1P the airfoil leading or trathng edge s blunt, some other method
must be gpplied in the vicinty of the blunted portion because the assumptions of

e
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perturbation theory are violated therc. In analogy to the work of Refeirence 1,
modified Newtonian Theory will be applied te the blunt leading edges and an
empirical afterbody separation pressure correction applied at the blunt trailing edges «s will
b discussed iater.

The modified Newtonian pressure coefficient is

Cp = C, sin®0 (17)

PO

where 0 is the angle between a tangent to the local body surface and the
freestream direction and waere the stagnation pressure woefficient behind a normal
shock is:

T o

- -1
Lo 2 Hatom? H y+1 ! | 18)
Po M2 2 L:ny;-w»l)

If the blunt leading edge of the wing 1 cylindrical in a direction perpendicular to
the leading edge. then this circular shape appears as an ellipse in the streamwise
direction for sweptback wings. Thus, for & given point on the airfoil leading edge
with coordinates (x,y.2), it can be shown that (sce Appendix Ay

A

Diryz) = tan ! rp (¥)= X cos A, (19)

Note that [Fquation (193 assumes  the leading edge radius may vary along the
span. that is r; . = r (v) The pressure coelticient over the elliptical leading cdge
can now he calculated at each airfoil section by comibimng Equations (173, (18),
and (19).

The quesiion  that  remamns  is  where  does  one  start  the
perturbation theory aft of the blunt leading edge and where does one ond the
modilied Newtoniau Theory. Before proveeding to puswer this question, it is helpiul
to review the work of Reference | which combined the second order perturbation
theory of Van Dyke with the modified Newtonian Theory to calculate wave drag on
bluni bodies ot revolution. In that work, the perturbation theory was started as far
upstream on the spherical cap as possible while still getting reasonably accurate
perturbation  pressure cocfficients. It was found that slopes of 25-30 degrees were
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optimum. Althouga the results were unpublished, it was found in that wosk that if
first-order perturbation theory were used, this angle must be reduced 'to abrost 15
degrees. Also, it was found that second-order theory accounted very well {r the
over-expansion region around the spherical cap whereas the first-order theory dis
not. The important analogy to be drawn from this discussion is that for th.ce
dimensional wings, a first-order (rather than a second-order) theory is combinad
with moditied Newtonian Theory fo calculate wave drag when the leading cdge is
bluni. Thus, in analogy to bodies of revolution, one would intuitively expect the
angle where perturbation theory begins to be around 15°. A disvontinuity in
pressure coefficients of Newtoniun and perturbation theory is eapected at the match
point due to the failure of the first-order theory to account for the over-expansion
region.

Figure 7 compares, qualitatively. the first and sccond - order
theories when combined with modified Newtonian Theory. The second-order theory
is started at say 0, = 30° and the flow allowed to overexpand around the shoulder
and recompress downstream. The pressure coefficient will usually intersect that of
Newtonian Theory and this is the match point, x,. indicated on the figure. This
combined theory usually [follows the experimcnt-al data reasonably well. The
first-order theory starts at 9, = 15° and the pressure coefficient does not usually
decrease enough to intersect the Newtonian theory. Hence, a discontinuity in the
pressure coefficient curve for the entire configuration exists at the match point, X,
For drag calculations, the Newtonian Theory is used up to the point Ny (which
usually will be at the juncture of the cylindrical leading edge and the airfoil after-
body) and perturbation theory past x,. The drag coefficient of the blunt leading
cdge is (see Appendix B):

{

sin 3
Sin
sin 0, -~ % (20)

e f -

o = ARG, cos? A
ALk S..

where
e
(Fpp y H ),
Ravg - o)
The drag of the section aft of the cylindrical leading edge can be found by
numerical quadrature of Equations (14) and (106).
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FIGURE 7. COMBINED NEWTONIAN AND PEZRTURBATION THEORY
FOR A BLUNT LLEADING EDGE.
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2. Skin-Friction Drag

In general, the boundary layer consists of a laminar. transitional, and
turbulent region; however. no apprecicble errors in total drag will be realized by
assuming a laminar and turbulent region with transition taking place instanteously.
Moreover, transition from laminar to turbulent flow is assumed to occur at a
Reynolds number of 500,000 based on the wing mean acrodynamic chord.

According to Van Driest, the skin-friction drag coefficient for a single
wing is then:

-l

> chucd_ 1)

C.‘\ P = (C"T )Cr+ (Cf‘: ); - (CrT ); ( S

(21|

ref

Here (C,~T)5 and (C,‘T)-\- are the mean skin-friction coefficients of turbulent flow
based on the mean chord and transitional location on the mean chorc. respectively.
They are computed by solving:

0.242 | 422 .
' w(sin”! B +sin”! B,) = log, (R '(“_;>' .—"”\(22)

implicitly for Cy_ where n for air is 0.76. The constanis A, B
Equation (22) are defined by:

and B, of

I 2

B = .__2.{:‘;2_.'__]1__ . B. = F
! (F2 +4A2y2 2 (IF2 4 A2
(y- DMEL " 1+ (y~ 1)/2M?

A= |———=| | p=  —1 T
2T, /T, Ty /T.

The Reynolds Number of Equation (22) is
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where £ is ecither T or X. The wall temperature can be related to the freestream
temperature by!:

1
T, = 1+091— m? (24)

Finaily, the laminar skin-friction voefficient Gy is®

N
138 (25)

(€, )= =

l\‘\ ]RN

where the Reynolds nunber is based on X.
3. Trailing Edge Separation Drag

If the trailing edge is blunt or if' its slope is large, the boundary layer
will separate somewhere on the rear of the wing. This results in a high drag region
similar to that on the base of a projeciile, except here the scparation is a
two-dimensional as opposed to a three-dimensional phenomenon. The pressure on the
rear of the wing will then be that of a two-dimensional rearward facing step.
Chapman'!3) presenis experimental results for a blunt wing with no slope at the
trailing edge. These results are presented in Figure 8 as a function of Mach number.
Note that the data for M_ < 1.1 has been extrapolated based on the general shape
of the three-dimensional base pressure curve presented in Reference 1. If (rp ) and
(1y; ), are the radius of the trailing edge blentness at the root and tip. respectiveiy.
the trailing edge separation drag for one fin s (see Appendix C)

WCry Jrpp e+ ()

- h]
Cap = 73 5 (20)
Hret
For cruciform fins this becomes:
2,
L Py ;
Cag = 57 |0rnh () (27)
Mred
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4. Base Pressure Drag Increase Due to Presence of Fins

There are several primary factors which determine the effect of ains
on base pressure. These factors are fin location, thickness ratie, aspect ratio. profile.
sweepback angle, and number of fins. Based on the sl amount of experimental
data available, it is not possible to accurately account for any ol the above factors
for a general configuration. However, order of magnitude effects of two of the
variables, fin location and thickness ratio, can be estimated wsing References 10
through 19.

To cstimate the effect of fin thickness to chord ratic on base
pressure, it will be assumed the f{ins are flush with the base. The effect of the fins
not being flush with the base will be accounted for shortly. Figure 9 is a plot of
ACPB/(t/c) versus Mach number. Here

ACPU = (CPB )\\'i!h fins (Cpl;)

no fins

The points above M_ = 1.5 were taken from the data of References 16 and 17
whereas those points below M_ = 1.5 were taken from Reference 19. Again it
should be emphasized that there are too few data points to put a greal deal of
confidence in this curve. For a given Mach number. M,. the increment in base
pressure due to the presence of fins is then:

AC

(ACp, ), =

o /’> 7

t/ie
¢fe) Jy - My \
The values of t/c which (27) was derived for were ten percent or less.

The work of Spahr and Dickey!”? has shown that if the fins
were placed upstizam a given distance rather than flush with e base, the effect on
base pressute is not as great. Furthermore, if the fins were moved far enough from
the base, they would have no effect on base pressure, the amount of this movement
being dependent mainly onr fin thickness to chord ratio and profile. As seen in
Figure 10, this distance varies linearly with t/c up to values of G.10. The curve in
the figure is then extrapolated from t/e = 0.1 to t/c = 0.2.
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Now if’ a lincar variation of (ACp ). is assumed between its maximum
when the fins are flush with the base and zero when the fins are far enough away
from the base. then Eguation (27) may be modified in the form:

ACp X

(AC, ). = - ~rg <E_.. 0.1 .).(.) . _t- = 0.1 —
B (t/c) | yam \C © ¢ s

t X

(ACp ) =0 - <00

¢ C

xfc in Equation (28) is the distance (in chord Iengths) upstream of the base. This
empirical relation was derived only for cruciform fins.

C  Tail or Canard Alone Litt

To calculate the normal force, the wing is assumed to be represented by a
flat plate of given planform with zero thickness and camber. This assumption i
justified because thickness has only a second-order effect on lift (except for thick
wings in transonic flow} and most missile configurations have wings with zero
chamber. The methods used to compute the canard or tail alone lift are different
for subsonic, supersonic, and tran-onic flow and will be discussed scparately below.

1.  Subsonic Flow

The Dbasic equation of motion is Equation (1) with boundary
conditions (3) and (4). The bvoundary condition (3), under the assumption of zero
thickness and chamber. may be simplified to-

wiay) = ¢, = -« (29)

In addition to these boundary c¢~nditions, the Kutta condition (which requires the
velocity on the upper and lower surfaces at the trailing edge to be equal) is abo
imposed for subsonic flow. Lkquation (1) may be simplificd somewhat by using
Gothert’s rule'2® o relate the compressible subsonic normal force or pitching
moment to the incompressible case. That is:
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(CN )O,ﬂllc,ﬂlﬂ Ba

o (CN )M witle, R a = - M2 (30
. (Cn o si/e 3R pa
Culyeme = N 31
1~ M2

However, it was assumed apriori that the only contribution to lift was due to
angle-of-attack, so Equations (30) and (31) may be simplified to:

(Cy )O.ﬂrR.lia

Croe = _—l—;{;— (32)
Cylosm pa

(Cy )Mw.ﬁR.a = ‘—-“‘I o (33)

The way this rule is applied is as follows: given a wing of aspect ratio, AR.
freestrcam Mach number, M_, and angle-of-attack, «, the normal force and pitching
moment can be obtained by calculating the normal force and pitciing moment on
another wing of aspect ratio AR, Mach number zero, and angle-of-attack fo. Using
the above relations, the normal force and pitching moment on a given wing at any
subsonic Mach number may be fornd by walculating the aerodynamics of an affinely
related wing at zero Mach number.

For M_ = 0, Equation (1) reduccs to La Places Equation:

¢X‘€ i ¢Y}' +d’zz =0 (34)

The solution to Equation (34) can be shown to be:(31)

A -y
o(xy.z) = —-——fj CP()\"Y') 7E + g ,](I.\ dy, (35)

y-vy, )2+22 M(\"‘\ )¢ +y -y, )+




where AC, = Cp,~ Cp,- It is required to determine the pressure loading AC over
the entire surface. Fohowmg Chadwick!*2®, Equation (35) is first differented with
respect  to and tie limit as .2 - O taken. The result is then equated to the
boundary condition, Equation (29). to obtain:

ACp(xyy ,— X=X
= 1+ dx, dy (36)
Sﬂff y- y,l' ;,/'fx-xi)zﬂy—y,)2 H

The cross on the y, integral indicates a singularity at y = y;. in which case
Manglers principal-value techniquet2!) can be applied. The details of the solution of
the integral Equation (36) for AC,(x.y) will not be repeated here as they are givea
in detail in many references (see for example. Reference 22). Worthy of note.
however, is the fact that Equation (36) is an integral equation for which the wing
Joading AC, is to be found as a lincar function of angle of atiack.

Once the span  loading AC,(xy) is known over the entire wing
surface. the normai fore. at a given spanwise location is:

1 SrF
Al - w—— g
C, . AC,dx (37)
“LE
The total normal force for the entire wing is:
bf2

\
Cy = T eC, dy \78)

The pitching moment of a given airfoil scetion, about the point where
the wing leading edge intersects the body, is then (positive leading edge uph:

\TE

XAC,dx (39)




The total pitching moment becomes.

bi2

"
Cy = 'S—'-r C,, dy 40y
re

If it is desired to calculate the pitching moment sbout some other reference point,
then

_ X0
CMO - CM + CN 0 (4
ref

where X, is the distance from the reference point to the juncture of the wmng
leading e¢dge with the body. The center of pressure of an airfoil section is:

c
. = . Y
Xy = - 42)
cr
CI\
or of the eniirc wing
C
XCP ——’ | (43
Cy
Finally, the spanwise center of pressure of a wing semispan is:
b/2
J eC ydy
0
pr = i UIZ (44)

¢C, dy
0

Equations (37), (38), (39). (40), and (44) can be solved by numerical quadraturc. such as
Simpson’s rule, with special attention given to the leading edge singularity




2 Supersonic Flow

Here agan Faquation (1) is valid along with the boundary conditions

4) and (29). However, it will be assumed in the present work that the wing

trailing edge is supersoric (Mach number normal t¢ wing trailing edge is greater than

one) so that the Kutta condition need not be applied. Two cases will be

considered: supersonic leading edges and subsonic lcading ¢ sges. For both cases the

flow is conical in nature from the vertex point which is the intersection of the
wing leading edge with the body.

a.  Supersonic Leading Edge

Since the flow is conical. the flow propertics are constant along
rys cnanating from the vertex point and lying behind the Mach line. Referiing to
Figure 11A, where the leading edge Mach line intersects the wing trailing edge, this
means that if' the flow propertics at one point on the ray are known they are
kncwi all along the ray. It is then a matter of computing the induced velocitios
and hence lifting pressures on seversi rays from point 0. The lifting pressure on any
one ot these rays in region 2 s:t!d)

45)

where n and o were defined by 7A Ahead of the Mach line, in region 1, the flow
is two-dimensional so the lifting pressure is constant at:

e e L do
z.\(l, = A(P= = ﬁ {do)

If the wirg were tapered to a point. the above two relationships
would allow complete determination of the hiting pressures over the wing. For most
practical cases, the wing tip w not pointed so tip effects must be accounted for,
The tip affects the pressure within the Mach line from the tip leading edge
tregion 3). Withm thss region. the flow is again conical along rays from point D so
the hftmg pressure caused by the tip iyt 3)
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, |
ac, = = A% 47)

= — tan™
3 7:[3\/]-7)2 -optl+n)

The original equation of motion, Equation (1), is lincar so that superposition of
sotutions is allowed. Thus, the total litting pressure in region 3 is:

ACy = AC, +AC,

I the situation arises such that the Mach fines infersect. as shown at the bottom of
Figure V1A, then an additional pressure of A(‘Pz is created in region 4. Hence. the
total lifting pressure in region 4 is ’

ACy = AGy +ACy

The second case to consider when the leading edge is supersonic
o owhen the leading edge Mach line intersects the tip as lustrated :n Figure 11B.
{he litupg pressures - regions 1, 2. 3, and 4 are calculated in tae same manner as
when the Mach line intersects the trailing edge. However, in regios 5 the lift to be
cancelied along the tip is variable (sex Fquation 45) as opposea to the consfant
value cancelled in regions 3 and 4 (see Lquation 40). This complicates the problem
sonewhat in that a summation (or integration) must now be performed to calculate
the caneellation litt in region 5. Referring to Figure 11B. the region 5 is broken
down into a fimte smmber of intervals, in the following manner. Conical rays from
tiie verten ot 0 are projected behind the Mach line OA and intersect the wing tip at
cyial intervals aleng the tip tlor example, rays Q) and OK). Lines are then drawn
from the pomts of mtersection on the wing tip varallel to the Much line Al until
the pomt P(xv) s enclosed. The difference in AC, across one of these intervals is
Wital tnust be caucelled  throughout the region 5. For any given interval then. say
IK. tins difference in pressute 1s found by applying Fquation (45) to each of the
s trom O passing through J and K. That is

AC, (Nb2) = AC, (\Nbf2) - AC, (\Db/2)
Iy i 18
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ACPJK (X.b/:\‘.) =

The effect of this cancellation pressure at any point Pix.y) is then:
yp

2 ‘ +ayp
AC, (X)) = AC, (x.b/2)= tan ! A% (48)
ip IK i -a“,(l +7)

Now the interval JK is any interval upstream of the Mach line from P passing
iongh the wing tip. If m is the fotal number of intervals upstream of P. then the
total lifting pressure coelficient at pomt Pia,y) within region § is:

1-m
+A(‘P4+ z AC,
1

-0

p

where A(“‘,ip is given at cach mterval by Equation (48),

The force and moment coefficients can now be found by
substituting the expressions for AC, in cach region mto the Equations (37) through
44y and performing the indirated operations. The integrations could be carried out
in closed form for regions | through 4. but the formulas are very lfengthy for even
the stmpliest cases.' 2%} A more straigltiorward approach 15 to simply numcricaily
mtegrate  the integrals over the entire surfacc. particularly since the pressures in
region 5 have to be numerically integrated.

b.  Subsonic Leading Edge

For subsonic leading edges. the velocity and lifting pressures
approach infinite values near the leading edge. The solution for AC, is complicated
somewhat by this singularity, but due to the conical nature of the flow from the
vertus points 0 and D (Figure 12). a closed form solution can be obtained. For
reion 1 of Figure 12 this is:(*D
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AC, = AC, = tu 49)
: EtanA /1- 0]

where E js a constant dependent only on the leading edge sweep angle and Mach
aumber.

That is,

712
Eky = 1 - k2 sin? 0d@ (30)

and k= JI-g%tan” A, .. The value of the complete elliptic integral (k) has
been tabulated and appcars in standard mathematical handbooks.

The lift to be cancelled at the tip is variable as was the case for
supersonic  feading edges when the Mach line intersected the tip. However, in (his
cas. the integration can be carried out in closed form. Thus, the cancellation lifting
prassure is:(2 )

(51)

x2 - B%y2n% L KK |2

where

(- a.n- 1) —
k:_- ..—..—.——Q—’Z—.l?_..-—‘ k’: l...k~

2n(a, + 1)

ag(x + Byn) £b/2
U = sin” a —_—

ﬁh/’(l +0u,) o X+ 8y~ bf2)




Here F(0,.0,) and E{0,0,) are elliptic integrals of the first and second kind,
respectively, which again can be found in any standard mathematical handbook. The
complete elliptic integral K is related to Ft6,.0,) by K = F(()l.n/?_) and the
complete elliptic integtal E of FEquation (50) is related to E(0,.0,) by
E = E@,.7/2).

The total lifting pressure co=fficient at any pomt within region 2
is then

ACp = AC, +AC,,

The integrations for spanwise lift and pitching moment can be
obtained by integrating Equations (37) and (39) numerically. Howewer, caution must
be taken in these integrations because for subsonic leading edges. the lifting pressure
goes like 1A/N near the leading edge. In this vicinity, more mesh points must be
added to the flow ficld to get an accurate integration.

The total wing normal force and pitching moment van be easily
obtained by nwmerical integration of Equations (38) and (40). The chordwise center
of pressure is then found from Equation (43) and the spanwise center of pressure
from Equation (44).

3. Transonic Flow

As mentioned carlier, airfoil thickness has a second order ~ffect on
lift in subsonic and supersonic flow. However, this is not true in transonic flow so
the assumption of a flat platc with zero thickness is no longer valid except ‘or very
thin wings. Furthermore, as M_ approaches unity, Equation (1) cannot be uapplied
because the term (1 - M2 )$,, becomes of the same order as nonlinear terms which
have been neglected in dcrivixig this cquation from small perturbation theory.

Recent progress in the field of transonic acrodynamics has greatly
advanced the state-of-the-art, However. at present, practical methods for flow ficld
computation are still severely limited. For cxample, solutions for three-dimeasional
swept and tepered wings with thickness do not exist, even in approximate form. In
light of these considerations. an empirical approach to wing lift in transonic flow
will be uscd. The method adopted is that presented in DATCOM.**) This procedure
accounts, in an empirical manner, for sweep. Mach aumber, aspect ratio, and
thickness ratio bat not for airfoil section.

37




To apply the above empirical procedure, the force break Mach number
is found from Figure i3A tor a wing of zero sweep und corrected for sweep by
Figure 13B. The lift curve slope at the force break Mach number is then computed
by a simple expression derived from lifting line theory:(3%)

2R
(C ) = Y 59
Na b 2+ [ARZ({;Z +tzm"' A'/z).‘,4]/2 (59)

This value is corrected to agree with experiment according to Figure 14A. The
abrupt decrease in lift curve slope associated with thick wings is approximated by
the reiation:

(Cy ) = (=afeXCy )y, (60)

a a
where afc is given in Figure 14B. The Mach wumber at point a is:
M, = Mg, +0.07 (60A)
The subsequent rise in CNQ to a value at point b is
= (1 o Wy (61)
(CNa)b (1 b/u)((,Nq),.,,
where bjc is given in Figure 14C. The Mach number at point b is

M, = Mg, +0.14 (61A)

The normal force curve slope at M > 1.2 is calculated by supersonic ihin wing

theory and for M < M, by lifting surface theory. From this empirical correlation

one obtains (Cy ). . (Cy ). (Cy ) at the Mach numbers My . My, +.07, and
b Ng 'yt NGy . ; fb b

M,, +.14. For values of Cy_ in transonic flow in between these Mach numbers,

I 3 Kl (x

interpolation is used.
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The center of pressure of wing alone lift is usually around the quarter
chord for subsonic flow and half chord for supersonic flow. Transition from
subsonic to supersonic flow is assumed to occur in a lincar fashion between values
calculated at M_ slightly less than be and M_ > 1.2, The pitching moment
coefficient derivative of the wing alone is then:

= -y Ny
CM -\CPCNQ (623

D. Interference Lift

Interference lift is broken down into three parts: lift of canard or tail
due to presence of body. lift of body due to presence of wing or canard, and
vortex lift on tail due to wing shed or body shed vorlices. The methods used to
calculate  the interference lift components are essentially  those presented in
Reference 26. The necessary equations for the various calculations will be repeated
herein, but for the details of the derivations, the reader js referred to the above
reference.

The method used by Morikawa?”? for presenting lift interfersnce s
adopted. He defines the wing alone as the exposed hall wings joined together. The

lift of the combination is related to the lift of the wing alone by the factor K¢ so
that
Lo = K(‘ L, (63)
K. is actually composed of three components,
Ko = Kpwy TRy t Ky (64)

which are the ratios of the body lift in presence of the wing, wing Ift in presence
of body, and body lift to the lift of the wing alone. That 1s:
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We will not be concerned with KB as it was found in Refcrence i as discussed
carlier. The factors Ku(w) and KW(B) are found from a straighiforward application

of slender body theory and are:

(- r2gs2) = 2fm {1 + 1t s tan ! Vit fr- rfs) + /4]

KB(\‘:’) = (1 - l'/S)z
r2J2[(s/r-1/s) +2 tan™ ! (r/s)]}
(1 -1/s)?
_ 24 et s an  acs fr - ofs) + wj4)
K\v(B) - (1 - t/s12
12/s2[(s/r = r/s) +2 tan™ ! (r/s_l]}
(1 -r1/s)?
KW(B) and Ke(w) of Fquations (66) and {67) ure related to cach other by:

- 2
Ky ¥ Kyqw) = (1 +1fs)
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Values of these parameters are plotted in Figure 15. Eguation (66) is used to
caleulat: K,,, for all subsunic Mach numbers and for supersonic Mach numbers if
BRI+ N [H/mB) + 1] < 4. If R + N[1/(mp) + 1] > 4, Nielsen?®? has shown
that for no afterbody (scc Figure 10), a more appropriate value of Ky .., can be
found from:

2

. w>
d

, PR R
Ky lBCy ) 1 # D)= D) = — Fegry <L> [Q
s J(Bd e\ 1
cos- ! mp + ¢ /(B gt _A cos™ ! [—
| +mc /d fd) mp

o)
N\ —— i . :
+mp (t'—> \/m2p2 - 1sin™! (E(-) - (g2 - 1 cosh! (gg) (69A)
S

Bd ‘

when gm > 1 and c,/ﬁ >4 I pm <1 oand ct/;} > d Ky is found from:

16ymp [Bd me, \ [/ (mc )
K At Disfr- 1) = —Y—— [\ {1+ =) (5 - )=+
B(W)m(CNa)w]( )s/r- 1) ﬁ(lllﬁ"'l)(l."){(\ d ),[(Bd 1> d
(69B)

W\ 2 ?
B TS (A [ T /;) s ﬂ
( B(b (mp) mB(Sd / Jm + 1) ftan B tan /ﬁd 1 / 7 +|-
L AR / i LR W L S
Jmg eV a

It C,/ﬁ < d¢ in Fquations (69A) or (69B), ¢, /B is sel equal to d. For an infinite
afterbody behind the wing or canard (see Figure 16), Equations (69A) and (69B)
are replaced by:
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8m  fe Bm >
1 C SN = +
B(w)[ﬁ( Nzx)w] (sfr = 1 ) gdrﬁ'z m? -1 (Bd){(l +5m/ [: :

2 T+ +pmpdle,
(1+ ll(ﬁ’m))ﬁd/cr] o8 l{:ﬁln'*'(l-*ﬁm)ﬁd/c ]
r

2
VM - | JB2m? - 1/ B _C_f_\
T Gt [Jl +2dfc, - l] - B \cr cosh™ ! t+6d

LN L (70A)
i+pm gm

formg > I and by

2

16 {¢ gd 3/2
K C < fy o~ 14\ = — T m +(1 4 }— .
B(W)[m Nnr)w](blr W ) 7 (ﬁd)(] +m,’3> [l (1% o) c]

14

P+ + l/(mﬁ‘)‘-s-'l " =2~ (1 + l/(mﬁ))éﬂ 2l1nh" \f ! (70B)
el 7 ¢, | L+ (1 + Lmg)sdfe,

for mp < 1 For cases in between no afterbody and an infinite aterbody. K may be

9 . . . . w)
found approximately by linearly intorpotating between the values given by Equations (69)
and (70). That is. referring to Figure 16,

, - {lKB(W))IA ‘ [KB(W)]NA .
[h““”;ls" T\ d cot g XAFT +[I\B(WJNA an

Here the subscripts SA. IA, and NA refer to short, infinite, and no afterbody.
respectively.

In addition to the normal force due to angle of attack, there is a

normal force created due to wing deflection 8. The Jift of a wing duc to a
dellection § is given by:

46
et




C = Kk, (p,(Cy ) B | (72)

NwiB) o w

N VLA L YL T U (Y /A
T GE MG (s/r)? + 1

.,
#H

AN G L R A (T L A
N NI T R L (s/r)I+1

Wsfetd) [n/n’- 1 8 [(s/r)z-H] (73
e 11} + 1
s Il (s/r)2 + !_l s/r- 102 /e

Fie it on the body due to the control deflection is

Nlllw)tkﬂw)c"a)* 8 (74)

whoere

Nprwr ™ l\vnn kwllﬂ (75)

K and k are given in Figure 1S as a function of r/s,

wilth Reiw)

Stoctly  speaking.,  Equations  (66),  (67). and  (73) apply to slender
wine-heuly  confipurations  which have low aspect ratio wings. Furthermore, the
tradtine odiyes of these wings must be perpendicualr to the body axis or swept
farward but canvot be swept back. Neilsen!26) has shown that good results can be
obiained  tor the interference lift components for high aspect ratio wings cven
though the slender body approximation is made. However, if the wing trailing cdge
is swept back the previous slender body formulas are not applicuble without further
studv. For wings which have swept back trailing cdges, and where slender body
tivore ic ased  to calcuiate interference  lift, it seems rcasonable to assumc the
increased it op the wing due to the presence of the body is distributed cvenly
wlong the wing chord and is concentrated near the root. With this assumptior, the
bt oac 0 components of a swept back wing may be approximated by:
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-Kl“wl]li = {KBiwt]l(;
-Kw(b:]ll =1+ ([K“,”,,],- !)G
nk\v(B )]u =1+ (E\“"B’]l "])G

ikntwt]li 2({kw(“‘.]' i [k“'”“] l)G

where G = (cr)”/(c‘,)l and the subscript Il refers to the actual wing being
considered and subscript 1 reters to the wing for which the slender body Equations
(00}, (67), and (73) assumes. Figure 17 indicates how the abnve procedure is carried
out.

The negative lift caused by downwash of the canard shed vortex on the
tatl is given by

(CNQ)W(CN" )1 [Kwuz) sina +k,, ) sin 8] is -~ Ny S,

C. = . {701
N,y 271/‘{{“,(1“, -1, )8

el

This equation is determined {rom line-vortex theory assuming only one trailing
vortex per forward wing panel. The lateral location of the vortex, f,» measured
from the body center line is:

{C 0y S“,
{ ¢+ (77)

W 200C e 01

i

The span loading at the root (C,et, and normal fore: coefficient are xnown for the

particular  wing geemetry as  discussed  previously, The interference factor. i, of
| qaation (76) 1s.
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where
r [ h (s-t-t=-N [ +(f-s)2
L s-T ( )Qn : (. az
bbb 25 -r) h® + (- v)°
1 -RA f~s r-r
- (s-+htan ! {— -lltall"/-~—> ,
$-r h \ h,
) 2
. _tr - h
i f2+h2 "1 {2 +p?
and

= - 3(c[)“ /4 sm 6 + ¢ - ¢, - 3(cr)“,/4]sinoz

Here it is assumed that the hinge line of the wing is at the quarter chord.

The only remaining lift is the negative lift on the tal due to the body
shed vortex. This is

CNn(V) -

(79)
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where

Ko 3@t Ky p)d
41, - r Cude S

w w

r
\Y

<o

The center of pressure of the wing lift in presence of the body, canard
shed vortex lift, and body shed vortex lift are all assumed to act at the center of
pressure of the wing alone. The center of pressure of the body hit caused by the
wing is Mach number deper at. Complicated expressions could be derived for
center of pressure of this aft component in supersonic speeds analogous to
Equations (69) and (70). However, a good cngineering approximation is to assume
that the center of pressure is at the centroid of the cross-hatched area in Figure 16.
This climinates the need for considering separutely the afterbody, no afterbody, and
short afterbody cases. Thus, for supersonic flow, the .center of pressurec of the body
lift caused by the wings is (measured from the wing leading edge):

% - C?d/z- gzdsl()"' XAFT(zd- XAF'L/ﬁ)I 1/2 (SOA)
°p de, = B3 f2+ X, pp(2d = X, pr /B2

where

d/2 - XA FT/(Bﬁ)
d- XA pTl(zﬁi

X3 = Gt X pr

for

Bd- Xy pr 2 0 and Bd- ¢ - Xapr) <O

If d - Xapp = 0 and (Bd-c - X, pp) > 0, then:

o 3020 X py) = (e 23X, p )X by (80B)

7 o2
(C ¥ Xypp)* - X3pr

ch
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Binally, if fd - x.,; < 0. then

-+ fd
, - Ly M .
Xep = 3 (80C)

Fquation (80A) represents the case where the Mach line from the trailing edge
mtersect  the base v.ereas that from the leading cdge intersects the opposite side.
Fquation (80B) is used when both feading and trailing edge Mach lines from the
wing root chord mtersect the base whereas Lquation (80C) is used when both Mach
lines intersect the opposits side.

For subsonic and transonic flow. there is much less tendency for the hit
to be carried aft. For subsonic flow it is reasonable to assume the body carry-over
lift acts ar the center of pressure of the wing alone lift. ln transonic flow, the
wenter of pressute is assumed to vary linearly between its value at the force break
Mach number and that computed for M = [.2 by Fquation (80).

E. Summary Configuration

The total normal force of the entire configuration is:

(‘.\7 = CNB + [(K\\'(B) + KB(W))"Y+ (kw(B) +kB(w)) 6] (CNQ)\V

(81)

* [(K'mn * Ky a] QIR T O

Delining

(‘N = [K\\'(B)CY t kw(B)'S:I (CNQ)W

wil)

it

¢ [KB(\\ K S 8] ((‘N u) w

\‘Bu'.:

¢ =L, + )

wil) W epw




£ ) = ‘Qw +(?cp)B(w)

T = Ut &
e

B(T) — O +(xcr’)B(T)

the center of pressure referenced to the nose tip may be written as:

= 2
2 [QBCNB +CN“,(B)Qw(B) +CNB(W)QB(W) +CNT(B)QT(B) (82)
/
C 2 +,C +C £ /C
Nyery B \NT(V) NB(V)) T] N
The pitching moment about the nose is then:
Cy = Cyt (83)

A summary of the various theoretical and empirical procedures used to
calculate the static aere” = -f the wing or tail alone and interference effects
is given in Figure t .eady indicated, a summary of the body alone
procedurcs was given . _ .gare 2.
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Ii1. RESULTS AND DISCUSSION
A.  Comparison With Exact Linear Theory
1. Wing Wave Drag

For wings which have simple planforms, exact linear .theory solutions
enist by which the present numerical solutions may be compared. Simple planferms
arc defined as wings with double wedge or biconvex airfoil sections with the same
airfoil scetion and thickness ratio all along the span. Simple planforms aiso have
sharp leading and trailing edges.

.Figurc 19 compares the pressure coefficient of the present method
with that of exact linear theory for a biconvex airfoil design.(!3) The pressure
coeflicient has been divided by tf/c, the thickness to chord ratio. since it is constant
all along the span. As seen from the figure, the numerical solution gives essentially
exact results when compared with the solution of Reference 13.

Section wave drag along the span of a wing with a double wedge
airfoil section is given in Figures 20 and 21. Figure 20 is for a wing tapered to a
point {no tip effects) and Figure 21 is for a wing with fifty percent taper. The
exact analytical solution is taken from Reference 31. Section wave drag at sceventeen
spanwise  stations were computed but, as will be discussed later, only ninc are
necessary for reasonably accurate total wing drag. Again confidence in the numerical
solution is gained by the near perfeci agreement with analytical solutions.

The final two figures comparing numerical drag calculations of simple
plantorms with :\act solutions give total wing wave drag for biconvex and double
wedge airfoil scclions. The analytical soiutions come directly from the charfs of
Reference 30 Figure 22 is for the double wedge airfoil wing and Figure 23 for the
biconvex airfoil section wing. Both wings have zero taper. Slight discrepancies of up
to three to five percent between the aumerical and analytical solutions exist at
some Mach numbers as seen from the figures. This is due to the numerical
integration which smoothes out kinks in the pressure curves and due to truncation
crrors. However, in light of the accuracy of the exact linear theory compared with
experiment, this discrepancy is quite acceptable for design.

All of the preceding cases were for sharp leading and trailing edge
wings with simple  planforms. For more complicated configurations, closed form
lincar theory solutions for drag have not been obtained. However, the present
method, which determines the source strength locaily can still be applied. For
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example. comsider the wing shown in Figure 24. This wing has = varjable airfoil
section and variable thichness all along the span. Its design i dictated by structural,
rather than acrodynumue. copsiderations. Alo shown on the figure is a plot of
pressure coefticient aiong the chord tor iwo spanwise lovations.

A second example of wings not covered by evact nnear theory i the
wing with blunt feading and trailing edges Figure 25 gives the totad drae coelficient
twave plus drcbon plus trailing edge separation! for a biconvex airfoil with blunt
leading and  trailing edges and for three Mach numbers. Although no experimental
date exil to compare the theory with, the trends are generally what one would

spect, That 1 bluntness has a large clfeet on drag at high supersonic Mach
numbers but at low supersonic Mach numbers, the effect is not so large. However,
at  these low supersonic Mach numbers the linear theery results tor very small
bluniness ratios are questionable. This is because in the neighborhood of the leading
edg. where the slope is near the maximum of [ifteen degrees dincar theory starts at
slopes of fifteen  degrees  where Newtonian theory ends). the pressure coefficienis
predicted by lincar theory are quite large. The discontinuity between the pressuic
coetficient of Newtonian theory and that of perturbation theory is thus much larger,
However. os the bluntness ratio is increased the area over which linear theory is
applied decreases and hence one expeets the results to be somewhat better.

2. Wing Lift

Three cass are considered as  test cases to compare the numerical
solutions with ¢losed form analytical solutions such as presented o References 32
and 33, These include a wing with subsomie leading and supersoaje trailing edges, a
wing  with stpersonic leading and trailing edges with the Mach line intersecting the
tip. and a wing with supersonic leading and  traihng  edges with  the Mach line
intersecting the trailing edge. Each of these cases is sulticiently different so as to
check all methodology developed in the numerical calculation of lift on wings in
supersonic flow. The theory used in subsopic flow has been previously verified by
Chadwick.?2) Test data must suffice to determine the correctuess and aceuracy of
the tramsonic methodology.

Fignre 20 compares the wing loading along the span of a wing with
subsomie feading and supersonic traifing edges corresponding to the first test case
abuve. The Much lines and regions wheee linear superpostion ot solutions occur are
indi ated on the figure. As s apparent. the numerical solution 1 the same as the
analytical solution to the accuracy ot vlotting the dati

Figases 27 and 28 compare the analvtical and pumencal span foading

calenations tor a sapeisenie leadmg and truling edge wing In Figure 27, the Mach
e just barely  intersects  the tadling odge whereas 1 Figare 28 the Mach loe
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intenects  the tip. In both cases. the amalytical selution is reproduced by the
numerical procedure.

8. Comparison With Experimant

Several example cases are chosen to compare with experimental data
so as to place some degree of accuracy on the theory. The first of these is a ten
caliber missile with clipped delts tail fins. The experimental ¢ata are taken ifrom
Reference 34, which gives the static acrodynamics for 0.8 < M_ < 1.3. Figure 29
compares theoretical drag  coefficient, normal force coefficient derivative, and center
of pressire with the experiment as a function of Mach number and for o = 1°.
Recall that for M_ 2 1.2, the lift and drag (except for base drag) was calculated
numerically whereas for 0.8 < M_ < 1.2, the thcory consists of mosiy empirical
procedures. For M_ < 0.8, the wing lift is calculated analytically but most other
force components are computed empirically. With the exception of the novmal loree
coefficient slope at M_ = 0.8 and 0.85, the theory is well within ten percent of
eaperiment. The maximum error in center of pressure for this configuratiwn is five
pereent of the length or half a caliber.

The next case considered is again raken from Reference 34 where the
same  Lody geometry was tested with several different fins present. The case
considered is for aspect ratio two rectangular fins flush with the -base. The body is
the same as that shown in Figure 29. Figure 30A presents the small angle-of-attack
results for Cp. Cy ., and x ., as a function of Mach number and Figure 30B gives
Cp. Cy. and x_ as a function of a for Mach number 1.3. In both Figures 30A
and 30B. the results are acceptable from an accuracy standpoint, althcugh the diag
coefficients at M_ = 1.20 and 1.3 are off more than for most conligurations
considered. The rcason most likely lies with the empirical estimation of base
pressure increase due to presence of fins. At M_ = 1.3, this component accounts
for about 0.05 of the dreg coefficient, which, for this wing-body configuration,
appears high.

The final example chosen is a complex canard-body-tail configuration.
The body nose is sixty pereent blunt with two ogive segments and a 0.7 caliber
boattail. The canard has «n aspect ratio of two with a sweepback angte of 157, Is
shape consists of a sharp wedge leading edge with a constant thickness section Tollowing.
The trailing edge is truncated parallel to the leading edge. The tail has an aspect
mtio of four with cylindrical leading and trailing edges and where A= 30°.
A, = 2257, Ay = 37°, and A, = 30°. The tail thickness to chord ratio also varies
along the span. The detailed canard and wing geometry listed above is not needed
i caiculating Jiftt, but it must be known for drag computations. The results of the
calcutations  for this configuration are shown in Figure 31. Figure 374 gives the
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normal force and center of pressure for M_ = 1.6 and at various angles of attach.
Four curves are shown in the figure. canard-body-12il with canards deflected up by
ten degrees, canard-bodv-tail with no canard deflection, body-tail. and finally body
alone, Several points are worthy of note in this figure. First of all the body alowe
sofution agrees very well with the unpublished experimental data up to a = Io

Above o = 16", the theory 1 low which is probably due to not taking wmito
account Reynold’s aumber cffect in the body crosstlow drag coefficicnt. The nent
point is that for this configuration, the tail lift is about ten percen: too high and
the canard it about 157 too low so that the total lift agrees almost perfectly
with the cxperimental data up to the point wiere stall begins to occur (a0 > 14°).
This in turn causes the center of pressure to be more rearward than  the
experimental date suggest by about half a caliber. It is suspected that ihe theory
being high tor the high aspect ratio tail and low for the moderate aspect ratio
canard iy due to the {lowfield interaction effects from the complex configuration
and will not in general be true lor other cases. However, it does indicate that the
theory can be used quite eftfectively in design, even for quite complex wing-body-tail
geometries. The final point to be emphasized Trom Figure 31A is the fact that no
attempt has been made to predict stall characteristics. As seen in the figure, for this
configuration, stall occurs around o= 13° at M_ = 1.6. However, il the wing
thickness or freestream Mach number is changed the stalling angle of attack will alo
chunge.

The drag characteristics  for  this  <ame  missile are shown w
Figure 31B. The drag is shown as a function of Mach number and again the totai
force is  broken down into its components: body alone, body tml.  and
canard-body-tail  The body alone drag 1s acceptable in supersonic and subsonic flow
but iy wnacceptable it transonic flow where the empirical nature of the theory dous
not account for nose bluntness correctlv. The wing alone drag shown ut the bottom
figure, includes the increase in base drag due fo tails. This cavses the tail drug to
be high because the theory predicts this base drag increase to be significantly higher
than the experimental data suggest. However, the body-tail drag is still withm the
2107 catagory. Finally, the canard drag shown at the bottom figwe, is added 1o
the body-tail drag and the overprediction of (ail drag i compensated  omewhat
the vader prediction of canard drag.

As was mentioned carlier, the tail has a cylindrical leading cdee 1o
which the combined Newtonian perturbation theory must be used to caleulate the
pressure voeliicient  Figure 31C presents this pressure coefficient in the viciuty ol
the leading cdge tor Mach number two and at a spanwise  station ol
yi(b/2) = 12.5%. The discontinuity in pressure coelficient caused by the diflerence
in Newtonnm  and  perturbation  theory  estimates oceurs at a mach pomt o
X/o o 0.000,
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C.  Computational Time and Cost

Although the method presented herein for con.puting aerodynamics of
euided or unguided projectiles actually consists of several rather complicated
theoretical and  cmpirical  procedures, the cost to obtain lorce and moment
predictions is relatively small. For exampie, the most complicated configuration
considered to Jate was the canard-body-tail shape in Figure 31. To compute (he
acrodynamics at ten Mach numbers for a smali angle-of-attack takes about five
minutes on the CDC 6700 computer or costs about §75. Acrodynamics at
supersonic  Mach numbers costs about twice as much per Mach number than
subsonic or transonic Mach numbers. If the body has a pomted nose, or if there
are no canards, or if the fails are absent, the above time and cost can e reduced
considerably. For example, consider the puuiied Gody-tail configurations of Figures
29 and 30. These take less than two minutes of execution time for ten Mach
numbers and cost about $25. It is thus believed that the present method is very
cost cffective compared to experimental method. in that reasonably accurate results
for forces and moments can be obiained at a relatively small cost.
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IV. CONCLUSIONS AND RECOMMENDATIONS

EU

0.

A general method has been developed consisting of several theoretical and
empirical procedures  to calcuiate lift, drag, and center of pressure on
wing-body-tail configurations from Mach wnumber zerv to about threc and for
angles of attack to about fifteen degrees.

Comparison of this method with cxperiment for several configurations indicates
that accuracies of #10% can be obtained for force coefficients of mos!
configurations. This is at a cost of $75 or less for ten Mach numbers in the
range 0 < M_ < 3.

First-order theory can be used in conjunction with modificd Newtonian theory,
to calculate wave drag on wings with biunt lcading ecdges. However, at low
supersonic Mach numbers (M < 1.5) relatively large discontinuitics in pressure
coefficient exist at the match point.

Wave drag of wings with variable airfoil scction and thickness to chord ratio
along the span can still be caleulated by conical flow theory if the lceal source
strength is computed at cach point on the wing based on the local slopc At
the point.

Changes in body base pressure duc to the presence of tail surfac.s is not known
sufficiently for all airfoil shapes. It is recommended that a systematic wind
tunnel study be conducted for Mach number, 0 < M_ < 3, angle of attack,
0 < o < 20° and various airfoil geometries to empirically estimate this change.

Atthough much progress has been made in transonic flow thecory, no simple
method  exists for calculating wing lift or wave drag on complicated wing
configurations. It is thus recommended that much work continue in this arca
uantil practical tools are developed.

76




e e e

{ .
. 1.
i
N
§ 5
{.
H
‘
1
b .
N S,
:
A
4
E
) 4.
i
{
H
i
: 5.
2
:
, 0.
i
3 7.
:
¥
]
§
Y
¥
i
’
i
5.
'“«;‘;
33 9,
Gt
443
10,
11,

’ REFERENCES

Moore, [ G.. “Body Alone Aerodynamics of Guided and Unguided Projectiles
at Subsonic, Transonic, and Supersonic Mach Nuambers”, NWIL TR-2796. 1972

Saftell. B F.. Jr: Howard, M. L.: Brooks. F. N.. Jr.: ““f Method for Predicting
the Static Aerodvnamic  Characrerisnies  of  Tvpical Missile  Configurations  foi
Angles-of-Atrack to 180 Degrees™, NSRDC Report 3645, 1971,

Whyteo R ML “Spinner’ — A Computer Program for Predicting the Aciodviamic
™

Cocfficierts of Spin Stabilized  Projecriles”, General Elecine Class 2 Reports

juoet

Woodward. I'. A.. “Analysis and Design of Wing-Body Combinations at Subsonic
and Supersonic Speeds”, Journal of Aircraft. Vol 5. No. 6. 1968, pp. 528-334.

Van Dyke. M. D.. “First and Second-Order Theory of Supersonic Flow Pest
Bodies of Revolution’, JAS. Vol. 18. No 3. Ma-"h 1951, pp. 10i-179,

Tsien. [ S0 “Supersonic Flow Over an Inclined Body of Revolution™, TAS
Vol. 5. No. 12, October 1938, pp. 480-483

Wu. 1. M. Aoyomw. Koo “Transonic Flow-Field Cdculation Around Ogive
Cylinders by Noulinear-Linear Stretching Method”, U. S. Army Missile Comniand
Technical  Report No. RD-TR-70-12, April 1970. Also AIAA 8th  Acrospace
Sciences Meeting, AIAA Paper 70-189. January 1970,

Wu J. M. Aoyowa, K.i. “Pressure Distribution for Axisvmmetric Bodies with
Discentimeons  Curvature in - Transonic Flow”, U. S. Army Misile Commuand
Techmical Report No. RD-TR-70-25. November 1970.

Van Dzt Vo R “Turbulent Boundary  Layer in Compressible Fluids™, JAS.
Vol. 18, No. 3, 1951 pp. 145-160. 216.

Allen. I, H: Perkins. b W “Characreristics of Flew Over Inclined Bodies i
Revolurtion™, NACA RM A 50107, 1965,

Jachson, €0 M. Irr Sawyer. W, C.o Smith. R. S0t Method for Determinng
Surface  Pressures on Blunt Bodies of Revolwtion ar Small  Angles-of- {tiach
Sugersonic flow”, NASA TN D-4%05. 1968,




12. Powers. S. A.. Niemann. A, F.oo Der. L: A Numerical Procedure  for
Determinimg  the  Combined  Viscid-lnviscid ~ Flow-Fields  Over  Generalized
Three-Dimensional Bodies”, Volume I Discussion of Methods and Results and
Instructions for Lse of Computer Program, AFFDL-TR-67-124, Vol. i, 1967.

13 Fern. Antomo. Elements of Aerodynamics of Supersonic Flows, The MacMillun
Company. New York., 1949, pp. 292-343.

14, Puchett. A L., “Supersonic Wave Drag of Thin Airfoils™, JAS. September 1940,
pp. 475484

15 Chapnian. D. R, Wimbrow. W. R.. Kester, R. B.i “Zxpericaental Investigation
of Base Pressure on Bluni-Trailing-Edge Wings at Supersonic Velecities”, NACA
Rep 1109, 1952 tsupersedes NACA TN-2611).

16 Heyser. A . Maurer. FFooand Oberdorffer. E.; “Fxperimental Investigation on the
Effect of Tail Surfaces and Angle-of-Attack on  Base  Pressure in Supersonic
Flow™, Conterence  Proceedings: The  Fluid  Dynamic  Aspects  of  Ballistics,
AGARD-CP-10, 1906, pp. 263-290.

17. Spahr. ! R. and Dickey. R. Ru: “Effect of Tail Surfaces on the Base Drug of
a Body of Revolution at Mach Numbers of 1.5 and 2.0”, NACA TN-2360. 1951,

18 Love. L. S.. “Buse Pressure at Supersonic Speeds on Two-Dimensional Airfoils
and on Bodies of Revelution With and Without Tw:hulent Boundary Layers”,
NACA TN-3810. 1957,

19. Krens. b, L. “Full-Scale Transonic Wind Tunnel Test of the 8-Ineh Guided
Projectile”, NWL TR-2535. 1971,

20. Shapiro. A. . The Dynamics and Thermodynamics of Compressible Fluid
Flow, Vo' 1. The Ronald Press Company, New York.

210 Ashley. M. Landahl. M.: Aerodynamics of Wings and Bodies, Addison-Wesley
Pubbshing Company. Readmg, Massachusetts.

20 thadwich. W R “The Application of Non-Planar Lifting Surface Theory to ihe
Caleulation of Fxternal Siore Loads”, Complete 1972,

23 Jones. R 1 Cohen Dons: High Speed Wing Theory. Princeton  Acronautical
Paperbacks, Nimsba 60004




26.

33.

34.

Douglas Aircraft Co.. irc.: USAF Stability and Control DATCOM, Revisions by
Wright Patrerson Air Force Base. July 1963, 2 Vols.

Lowry, J. G.: Polhamus. E. C.: “A Method for Predicting Lift Increments Due
to Flap Deflection at Low Angles-of-Attack in Incompressible Flow™, NACA
TN-3911, 1957.

Pitts. W. C.; Nielsen. J. N.: Kaattari. G. E.; “Lift and Center of Pressure of
Wing-Body-Tail Combinations at Subsonic, Transonic, and Supersonic Speeds”,
NACA TR 1307. 1957.

Morikawa, George; “Supersonic Wing-Body-Lift”, JAS, Vol. 18, April 1951, pp.
217-228.

Neilsen, J. N.o Pitts, W. C.: Wing-Body Interference at Supersonic Speeds With
an  Application to Combinations With Rectangular Wings”, NACA TN 20677,
1952,

Eaton. P. T.. “A Method for Predicting the Static Acrodynamic Characreristics
of Low-Aspect Ratio Configurations”, NSRDC Rpt. 2216, AD 647234, 1966.

Bishop. R. A. and Cane. E. G.: “Charts of the Theoretical Wave Drag of Wings
at zero Lift”, R.A.E. Tech. Note AERO 2421, 1956.

Margolis, Kenneth: “Supersonic Wave Drag of Sweptback Tapered Wings at Zero
Lift”, NACA TN 1448, 1947.

Hannah, M. E. aad Margolis, K.: “Span Load Distribution Resulting From
Constant Angle-of-Attack, Steady Rolling Velocity, Steady Pitching Velocity, and
Constant Vertical Acceleration for Tapered Sweptback Wings With Streamwise
Tips", NACA TN 2831, 1952,

Martin, J. C. and Jeffreys, 13 “Span  Load Distribution Resulting  From
Angle-of-Attack, Rolling, and Pitching  for Tapered Swepthack Wings With
Streamwise Tips”, NACA TN 20643, 1952,

Craft, J. C. and Skorupski, J.; “Static Aerodynamic Stability Characteristics of

Munitions Designs at Transonic Mach Numbers”, U. S. Army Missile Command,
Redstone Arsenal, Alabama. 1973,

79




APPENDIX A

/O

Lo
¥ e




GEOMETRY FOR BLUNT LEADING EDGE WING

Assuming the wing has a cylindrical leading edge when viewed in a plane
rormal to the wing, it will have an clliptical cross-section when viewed in a plane
parallel to the freestream. The equation of an ellipse is:

x> | 722
= + ._'i- = 1 (A"])
ai’ 112

where ay and a, are the semi-major and semi-minor axis, respectively. If the radius

of the cylindricaf leading edge is denoted by r; | then:

4 = r pleos A, (A-2)

&
>

it

-
-
o]

Differentiating Equation (1), the local slope at any point along the elliptical airfoil
leading edge is:

dz cos A
(é) = —-;--1 [rLE - X CO$ Al] (A-3)

Defining 8 as the angle which the tangent to the surface at the point x.y.. makes
with the x axis, then

4

dz cos A
d(x.y.z) = tan~ ! (E:) = tan ! -—;-——l E‘Lﬁ(y)— X CO$ A‘] (A-4)

Here the leading edge radius, ry ., is allowed to vary in the spanwise direction.
Now if it is desired to determine the coordinates of a given point on the

ellipse given a value of &, then Equations (A-1) and (A-2) can be solved
simultancously to obtain:

A-l




x=rF( I. F]

cos /\
r ely) cos A, X Cos A,
tan 6 I (y)
2
where cos A!
tan 6
F= .
05 A\ 2
4
tand

(A-5)

(A-6)
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NEWTONIAN WAVE DRAG COEFFICIENT OF BLUNT LEADING EDGE WING
.. X!

o

The wing planform and coordinate systems are shown in the above sketch,
Consider a cross-scction perpendicular to the leading edge or along the x" axis. The
leading edge will be cylindrical in shape as scen below.
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The elemental force acting on the surface arca of the wing leading edge is:

dCV' = _I_’_go_s(]___ dA (B-1)
’ ]
é-poovi Srcf
where
dA = 1) (y)0dy'

Hence, for one fin we have

Oy pb/(2cos AY)

1 P-D_ , .

C. = 3 1——-—-—— cos Ory . (y )d0dy
ef 2
y gu G Spm v:

(B-2)

bf(2 cos A )

p Gy
== f j cos Or {y"dody'
S..c=p. V2
ref 9 poc oo .,ou 0

But the last integral of Equafion (B-2) is zero when considered over the entire
airfoil surface so Equation (B-2) may be written:

0, b/(2 cos Ay,

e}
C = g‘;.. Cp cos Orp (y'ydody’ (B-3)

For modified Newlonian theory,
Cp = C,,0 cos2 0 (B~1)

where 8 is the angle between a normal to the surface and the freestream velocity
vector.




To find @ define 1? as the unit vector normal to the surface so:
7= 0.8, +le'6_\-' +n,.8, (B-5)

Here m,., n .. n, are the direction cosines in the &, Gy., ¢, directions.
respectively and are 7. = cosb. 1, = Om,, = sin0. Now according to the dnt

product of two vectors. A.* B = |A| | Blcos®, one may write:
V_A
cosf = (B-6)
v, I Inl

But,

3T - ' A ol A ! -

V, s u v 8 vw b, (B-7)
where

| - [ . . -
u, =V, cos Apv, =V sinA,and w =0

Substituting (B-5) and (B-7) into (B-6) and performing the dot produc:
there is obtained:

cos § = cos Ay cos 0 (B-8)

Thus,




and (B-3) becomwes:

{2 cos ay 0

£y u
i 2cos” Ay , 3 L,
C. = —S—-——-—~ rlE(y) cos’® 0d0| ay {B-9)
ret o -{)
Integrating the inside integral.
3 \ b2 cosAy)
1 Cp" cos Al . Sin3 Ou [ '
C\. =27 ; .sm()u - 3 rLE(" Wy
e

If it is assumed that the leading edge radius varies lincarly from its maximum at
the root chord to its minimum at the tip chord then:

() = (Rp = Ry )-Z-(z cos A,)+ Ry (B-10)

Substituting this relation into the above iniegral and performing the integration there
is obtained:

hC[)D cOs Al ) sin3 0"
C, = Rive .smou~ 3

\ S‘.

ret

(B-11)

where R,y = (Rp +R[)/2. Equation (B-11) is for one fin. If there are four fins
present then the axial foree coceffivient in the x direction for the blunt portion
of the fin iw

veycd .
4bCp, cos™ A\ Ry v sin® 0

3 sin 0“ - {B-12)

CAl . = 4(‘\.«303/\‘
- ref

B-4
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TRAILING EDGE SEPARATION DRAG

The incremental force on the elemental area of the wing trailing edge shown
the sketch balow is:

dA tdy
d¢, =C -— = -— (C-11
AB P srcl‘ P Srcl‘

In analogy to the work of Reference 1, an empirical expression which takes into
account the slope of the wing trailing edge is

4y

(.‘,(/ = (‘
o) P t(v)

(-2

Again, assuming a lincar variation of the trailing edge diameter from (dp )y, at the
root to (dy )y, at the tip, the diameter at any y location is:

dey (V) = gy &d'r e~ Wy )y ,] ¥ (C-3

where
v o= 2y/b.

Then | quation (C-1) becomes:

-1




] - .
Cey pl Grr®) bCr, !

{.6

C = LY V = e i v
v IS ty) ¥ dy 23, | Ay (9)dy

Substituting (C-3) into (C-4) and integrating vields

bCpB
C"\B = 'E-S-';-l (RR)TIZ‘ + (‘RT)TI‘
or for four fins:
bCp, Gy,

Cop ™ 5T [Wedre +dp)yy] = S [(RR ey +(RT)Tlg]

e T

(C4)

(C-5)

(C-6)
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GLOSSARY

R Aspect ritio
b Wing span (dous not include body radius)
c Chord length at any point along span
Cy Axial force coefficient = CDO
CA{ Axial skin-friction drag coctficient
Cy " Trailing edge separation drag cocfficient
C"o Zero lift drag coefficient
CDw Wave drag coefficient of wing
Cdc Cross-flow drag cocefficient of wing
de Spanwisc wave drag coefficient
Cr, Laminar ski..-friction coefficient
CrT Turbulent skin-friction coefficient
Cy Pitching moment coefficient measured about nose tip (positive nose up).
Cy Spanwise pitching moment of wing
CMa Pitching moment coefficient derivative (dCy,/d,)
Cy Normal force coefficient
Nov) Normal foree coefficient on tail of body shed vortex.
CN.‘ Normal force coefficivut on tail due to canard shed vortex.
CNQ Normal force cecffic.ent derivative (dCy/d)

D-1
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GLOSSARY (Continued)
Spanwise normal force of wiag
Pressure coefficient
Base pressure coefficient
Stagnation pressure coefficient

Chord length at root of the leading edge portion of a medified double
wedge airfoil section

Chord length at root of the trailing edge portion of a modified double
wedge airfoil section

Lifting pressure on wing

Body diameter

elliptic integrals

Canard vortex semispan at canard trailing edge

Height of canard shed vortex above body axic at tail center of pressure
Tail interference factor

Ratio of lift of body to that of wing

Ratio of lift of body in presence of wing to that of the wing alone
Ratio of lift ot canard-body-tail combination tc that of wing alone
Ratio of lift of wing in presence of bodv to that of wing alone

Ratio of lift on body in presence of wing, due to a wing defleciion §.to
that of wing alone

ki = tanAi
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GLOSSARY (Continued)

Ratio of lift of wing in presence of body., due to a wing deflection §, to
that of wing alone

Lift of canard-body-tail combination

Mach number

m = fcot A

Reynold’s number

Radius of body (variable)

Radius of wing leading edge in a plane normal to leadmsz edge
Radius of wing trailing edge in a plane normal to trehing edge

Reference area (maximum tody cross-sectional area uniess wing alone is
considered iu which case the wing planform area is used)

Wing planform arca

Wing semispan plus body radius at wing root chord

Wall temperature

Wing thickness (variable)

Perturbation velocities in the x,y.z directions, respectively
Total velocity, V2 = (U_ +u)? +v? +w?

Rectapgular coordinate system with x at nose tip, y out right wing, and z
positive up. If no body is present, x begins at wing root choud,

Angle of attack




X

GLOSSARY (Continued)

Circulation at wing-body juncture of combination

Ratio of specific heats (y = 1.4 for air)

Wing deflection angle

7 =k/3 = 1/m

Angle beiween a tangent to the local wing sucface and freestrcam direction

Angle on ‘blunt lcading edge where Newtonian theory stops and
perturbation theory begins (match point)

Sweepback ungle of a wing generator (i = 1,2,3.4) with i = 1 the wing
leading edge and i = 4 the wing trailing cdge

Ratio of tip caord to root chord (2 /i)
Mach angle, p = sin~1(1/M_
Coefficient of kinematic viscosity

0 = kyv/x

Velocity potential

Wedge half angle (measured paralicl 1o freestream) of wing airfoil section.

Subscripts

cp

b

IA

Conditions at transoniz Mach number M, be +0.07

Conditions at transonic Mach number M, M“) +0.14
Center of pressure

Force break Mach number

Infinite afterbody




GLOSSARY (Continued)
Subscripts
L f.aminar

NA Nao afterbody

r Root chord

SA Short afterbody

T Turbulent

t Tip chord

VIS Viscous component

| Wing for which slender body values of interference lift are known.

1 Wing with sweep for which representative values of interference lift are
desired

0 Freestrcam conditions
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